MATH 579: Combinatorics

Exam 2 Solutions

1. Use difference calculus to compute $\sum_{i=1}^{100} i^{4}$.

We have $\sum_{i=1}^{100} i^{4}=\sum_{1}^{101} x^{4} \delta x=\sum_{1}^{101} x^{1}+7 x^{\underline{2}}+6 x^{3}+x^{4} \delta x$, using our table for $S(n, k)$. We continue as $\frac{1}{2} x^{\underline{2}}+\frac{7}{3} x^{\underline{3}}+\frac{6}{4} x^{\underline{4}}+\left.\frac{1}{5} x^{\underline{5}}\right|_{1} ^{101}=\frac{1}{2}(101)^{\underline{2}}+\frac{7}{3}(101)^{\underline{3}}+\frac{6}{4}(101)^{\underline{4}}+\frac{1}{5}(101)^{\underline{5}}-0=$ $2,050,333,330$.
2. Let $n \in \mathbb{N}$. Prove that $n\binom{2 n-1}{n-1}=\sum_{k=0}^{n} k\binom{n}{k}^{2}$.

By the committee/chair identity, $k\binom{n}{k}=n\binom{n-1}{k-1}$. By symmetry, $n\binom{n-1}{k-1}=n\binom{n-1}{n-k}$. Hence $\sum_{k=0}^{n} k\binom{n}{k}^{2}=\sum_{k=0}^{n} n\binom{n-1}{n-k}\binom{n}{k}=n \sum_{k=0}^{n}\binom{n-1}{n-k}\binom{n}{k}=n\binom{2 n-1}{n}$. The last step follows from the Chu-Vandermonde identity with $x=n, y=n-1, a=n$. By symmetry, $n\binom{2 n-1}{n}=n\binom{2 n-1}{n-1}$.
3. Let $n \in \mathbb{N}$. Prove that $n(n+1) 2^{n-2}=\sum_{k=0}^{n} k^{2}\binom{n}{k}$.

We begin with the binomial theorem, stating $(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$. Taking $\frac{d}{d x}$ of both sides, we get $n(x+1)^{n}=\sum_{k=0}^{n} k\binom{n}{k} x^{k-1}$. Multiplying both sides by x, we get $n x(x+1)^{n-1}=$ $\sum_{k=0}^{n} k\binom{n}{k} x^{k}$. Taking $\frac{d}{d x}$ of both sides, we get $n\left[(x+1)^{n-1}+(n-1) x(x+1)^{n-2}\right]=$ $\sum_{k=0}^{n=0} k^{2}\binom{n}{k} x^{k-1}$. Taking $x=1$, we get $\sum_{k=0}^{n} k^{2}\binom{n}{k}=n\left(2^{n-1}+(n-1) 2^{n-2}\right)=n(n+1) 2^{n-2}$.
4. Let $k \in \mathbb{Z}, x \in \mathbb{R}$ with $x>k-2 \geq 0$. Prove that $\binom{x}{k}\binom{x+2}{k} \leq\binom{ x+1}{k}^{2}$.

Since $k \geq 2,-2 k \leq-k$, and hence $x^{2}+3 x-k x-2 k+2 \leq x^{2}+3 x-k x-k+2$. We factor each side to get $(x-k+1)(x+2) \leq(x-k+2)(x+1)$. Since $x>k-2, x-k+2$ is positive (and so is $x+1)$. Hence we can divide by the positive RHS to conclude $\frac{(x-k+1)(x+2)}{(x-k+2)(x+1)} \leq 1$. Now, we compute $\binom{x}{k}\binom{x+2}{k}=\frac{1}{k!k!} x^{\underline{k}}(x+2)^{\underline{k}}=\frac{1}{k!k!}(x+1)^{\underline{k}}(x+1)^{\underline{k}} \frac{(x-k+1)(x+2)}{(x-k+2)(x+1)} \leq \frac{1}{k!k!}(x+1)^{\underline{k}}(x+1)^{\underline{k}}=\binom{x+1}{k}^{2}$.
5. Let $n, k \in \mathbb{Z}$ with $n>1$ and $k>1$. Prove that $k^{n}<\binom{n k}{n}$.

We compute $\binom{n k}{n}=\frac{(n k) \frac{n}{n}}{n!}=\frac{(n k-0)(n k-1)(n k-2) \cdots(n k-(n-1))}{n!}=\frac{n k-0}{n-0} \frac{n k-1}{n-1} \frac{n k-2}{n-2} \cdots \frac{n k-(n-1)}{n-(n-1)}$, which we can write as $\prod_{i=0}^{n-1} \frac{n k-i}{n-i}$. Now, $k>1$ so for $i \geq 1$ we have $k i>i$, which rearranges to $n k-i>n k-k i$. Since $i \leq n-1$, we divide by the positive $n-i$ to get $\frac{n k-i}{n-i}>k$. For $i=0$, $\frac{n k-i}{n-i}=k$. Hence $\binom{n k}{n} \geq k^{n}$ for $n \geq 1$, and for $n>1$ the inequality is strict.
6. Compute $\sum_{k=1}^{n} \frac{H_{k}}{(k+1)(k+2)}$.

We write $\sum_{k=1}^{n} \frac{H_{k}}{(k+1)(k+2)}=\sum_{1}^{n+1} H_{x} x \underline{-2} \delta x$. We set $u=H_{x}, \Delta v=x \underline{-2}$. This gives $\Delta u=x \underline{-1}$ and $v=-x \underline{-1}$. We sum by parts, getting $\sum H_{x} x \underline{-2} \delta x=-x^{-1} H_{x}-\sum-(x+1)^{-1} x \underline{-1} \delta x=$ $-x^{-1} H_{x}+\sum x^{-2} \delta x=-x^{-1} H_{x}-x \underline{-1}=-x \frac{-1}{H}\left(H_{x}+1\right)$. We evaluate from 1 to $n+1$, getting $-(n+1) \underline{-1}\left(H_{n+1}+1\right)+1 \underline{-1}\left(H_{1}+1\right)=-\frac{H_{n+1}+1}{n+2}+1$. Note that as $n \rightarrow \infty$, the fraction approaches 0 , so the sum approaches 1 .

